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Vacuum structure in SU(N) gauge theories is studied both in Coulomb and Landau gauge. It is shown that all Gribov 
copies are harmonic maps. Implications of harmonicity are discussed. Finally, a new SU(2) Landau gauge copy of the vacu- 
um is presented. 

In 1977 Gribov [1,2] observed that the Coulomb 
(Landau) gauge fixing condition OiAi = 0 (~vA u = O) 
does not uniquely fix the gauge. Later Singer [3] 
proved that the non-uniqueness of  continuous gauge 
fixing in a compactified domain (S 4) is a characteristic 
property o f  all non-abelian gauge theories with a com- 
pact gauge group. Even though the existence of  gauge 
fixing degeneracies is widely known, there is no physi- 
cal interpretation for the degeneracy. Gribov's original 
idea was to connect the degeneracy with quark confine- 
ment but so far this has not been expressed in a satis- 
factory form. Another  possible application would be 
to formulate in all other continuous gauges, using the 
degeneracy, a similar vacuum structure we have in the 
A 4 = 0 gauge [4,5].  This idea was first stated by Wadia 
and Yoneya [6]. In fact this approach seems to be 
very promising [ 7 - 9 ] ,  at least in the Coulomb gauge. 
Due to the lack of  a formulation of  the gauge degener- 
acy condition in a suitable mathematical framework 
this approach has not yet been completed. 

In this letter I present the vacuum degeneracy prob- 
lem from a new point of  view, and in subsequent pa- 
pers [10] I will use the presented formalism to give a 
general approach to the vacuum structure in the widely 
used Coulomb and Landau gauges. The mathematical  
framework is harmonic maps between riemannian 
manifolds, and rather similar ideas have recently been 
presented in the SU(2) case by Ghika and Visinescu 
[ 11 ] .  I will also present a new copy of  the vacuum in 

order to illustrate the vacuum structure in the 
Coulomb and Landau gauges. 

The following notat ion will be used. At the identi ty 
e E SU(N) I choose as basis for the su(N) Lie algebra 
a set of  n = N 2 - 1 traceless hermitean matrices )ti, i 
= 1, ..., n such that 

Tr (XiXk} = 28ik. ( I )  

The normalization fixed by the Cartan metric (1) 
means that for SU(2) the Xi's are the Pauli matrices 
and for SU(3) the Xi's are the Gell-Mann matrices. In 
the vacuum sector the vector potential  A u is given by 
the expression 

A ,  = co -18uco. (2) 

Here ~o is a map from the euclidean space- t ime  R k (k 
= 3 or 4) to the gauge group SU(N) represented by a 
unitary matrix. In the Coulomb gauge the summation 
index v gets the values v = 1, 2, 3 and in the Landau 
gauge v = t ,  2, 3, 4. With these conventions the diver- 
gence condit ion 8uA v = 0 can be expressed as 

02co + (Ovco auco- l )co  = 0. (3) 

This can be show n  [I]  to be the condit ion that w is an 
extremal for the functional 

1 f Tr (a~eo-lav~) dkx .  (4) E ( ~ )  = 

R k 
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Actually the energy functional (4) is ill defined as it 
diverges. However, we get sense to it by interpreting 
(4) to be defined on the compact subsets of  R k. This 
does not alter our conclusions and from a practical 
point of  view we can always use the formal expression 
(4). 

Next I define a positive definite bilinear form ds 2 
on the Lie group SU(N) by 

ds 2 = Tr {dco -1 dco}. (5) 

Here dco is the differential o f  a given variable unitary 
matrix co: R k --* SU(N). It is easy to check that (5) is 
bi-invariant, i.e. invariant under left and right action by 
any constant unitary matrix coo E SU(N). In the tan- 
gent space at the identity, T e (SU(N)}, (5) reduces to 
the Cartan metric (1). Now one can use a theorem 
[12] that states that the metric (5) is uniquely given 
by its value at T e (SU(N)). In fact, (5) is the Killing 
form on SU(N) which is the unique second rank invari- 
ant we have on SU(N). This gives the gauge group 
SU(N) a riemannian structure. 

An energy can be attached for all maps co from one 
riemannian manifold ~ to another riemannian mani- 
fold qY by the following energy functional [13,14] : 

E(co) = ~ Idco[ 2 dtt(qg).  (6) 

Here dco denotes the differential o f  co at the point 
p Ec)~.  Any deformation of  co which increases the 
topological irregularity (e.g. by putting in folds and 
wrinkles) will in general increase the energy E(co). One 
can use the intuitive picture that c~  is made of  rubber 
and c-~ o f  marbte and co constrains c?g to lie onC~. 
The maps co in some homotopy class II ( c ~  : c~ } that 
have minimum energy are the ones that constrain c/g 
to lie o n ~  in a position of  elastic equilibrium. These 
maps might be expected to have considerable topologi- 
cal regularity. The maps co that give the minimum ener- 
gy E(co) in some homotopy class are called harmonic 
maps [13,14]. They are extremals of  the energy func- 
tional and satisfy the Euler-Lagrange equation 

div(dco) --- 0. (7) 

A comparison of  eqs. (4) and (6) shows that the solu- 
tions of  (3), which I call copies o f  the vacuum, are 
exactly harmonic maps from the riemannian manifold 
R k to the riemannian manifold SU(N), when R k is 

equipped with its euclidean metric and SU(N) with the 
Killing metric (5). I will now discuss some properties 
that are obtained from harmonicity. 

(1) We know that both R k and SU(N) are real ana- 
lytic manifolds. This implies very strong regularity 
properties for the harmonic maps co: R k -* SU(N): If  
we require the minimum amount of  regularity for ad- 
missible co's (e.g. twice continuously differentiable) 
in order to assure that we are in the vacuum, which 
means that the field strength tensor Fuu identically 
vanishes, the harmonicity implies that the co's are real 
analytic [14]. This extraordinary regularity property 
of  harmonic maps shows that we must be very careful 
when dealing with copies of  the vacuum [15] that ad- 
mit singularities in some subsets of  R k. In what follows 
I consider only real analytic copies of the vacuum. Due 
to the strong regularity properties of  harmonic maps 
this will be a very slight restriction. 

(2) In the Coulomb gauge the copies of  the vacuum 
cannot essentially depend on time: If they depend on 
time, the time evolution defines a homotopy in the 
class of  solutions to (7). If the time evolution is essen- 
tial, it folds and wrinkles the "rubber" R 3 on SU(N). 
But this changes the tension and that is not possible; 
thus the time dependence cannot be essential. It can 
only cause global transformations such as translations 
and rotations on the manifold SU(N). This means that 
insofar as the vacuum structure is concerned one can 
safely set A 4 = 0 because the time evolution o fA  4 
= co -134co is unessential. This enables one to treat the 
Coulomb gauge vacuum problem as a special case of  
the A 4 = 0 gauge. 

(3) On the other hand, in the Landau gauge no vacu- 
um tunneling picture works. This is due to the symmet- 
ric introduction of  space and time into the gauge condi- 
tion: If one imposes the Landau gauge condition at a 
given point in space-time one must know the situation 
in an infinitesimal neighbourhood of  that point in order 
to assure that the Landau gauge condition is satisfied. 
This means that no time-slice treatment can occur. 
Hence there cannot be any tunneling between different 
vacua A signal of  this mixing of  the vacua is the time 
dependence of  the topological flux q(t) defined as [15] 

q(to)=(1/96rr2)ei/keab c f A a b c i A / A  k d3x. (8) 

t=to 

If one calculates this expression for the copy of  the vac- 
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uum given in ref. [16] one obtains 

q(to) = 7r -1 [a(r, to) - ~-sln  2cz(r, t 0 ) l ,  (9) 
r = 0  

which varies continuously between 0 and ½. This 
shows the mixing nature o f  the Landau gauge: the vac- 
uum structure is there but it is confused by the equal 
treatment o f  t ime and space. 

(4) An interesting proper ty  o f  the copies o f  the vac- 
uum in the SU(2) Coulomb gauge is the following: If 
one compactifies the spatial part R 3 by imposing the 
condition 

lim co(r, 0, ¢) = constant, (10) 

and assumes real analytici ty at the point {oo}, the vac- 
uum structure is uniquely given by  the trivial vacuum 
co -= const. (Note that the real analytici ty is an essen- 
tial but mild assumption, due to the strong regularity 
properties o f  harmonic maps; for example, the proof  
given in ref. [ t7]  fails as it does not exclude the 
asymptot ic  behaviour of  the form e(r) ~ sin(r3)/r, in 
other words, there are real analytic functions on R 3 
that vanish at infinity but the asymptotic  behaviour of  
the derivative can be non-trivial.) The proof  goes as 
follows: First one uses the real analyticity to expand 
co in powers o f t  in the vicinity o f r  = oo. This gives in 
first order 

~o(r, 0, ~b) = co 0 + (1/r)col(0,  ~) + .... (11) 

where coO is a constant matrix.  Substituting this into 
the energy functional (4) one notes that E(co) is finite. 
Now suppose co(x, y ,  z) is a local minimum of  the ener- 
gy functional. This means that E[co(x/a,y/a, z/a)] has 
a vanishing derivative with respect to a at a = 1. But 
E(coa) = aE(co), so E(co) must vanish. This implies that 
co(x, y ,  z) is a constant. QED. 

One immediately notices that similar results do not 
necessarily hold in the Landau gauge; simply expand 
co(r, 0, $, t) in the vicinity o f r  = oo and notice that 

E(co) may diverge, due to the t e r m  34coa134coal , for ex- 
ample. 

(5) In the literature [ 18] it has been postulated 
that the Coulomb or the Landau gauge vacuum struc- 
ture might allow multi-valued copies of  the vacuum. 
But this is in contrast with real analyticity: Multi-val- 
uedness is possible only if one allows singularities in 6o. 

Next I present a new copy of  the vacuum in the 
SU(2) Landau gauge. The copy arises from the observa- 
tion that R 4 = R 2 × R 2. This splitting of  R 4 means 
that if there is a copy of  the vacuum in R 2 satisfying 
the two-dimensional Landau gauge condition, one gets 
a copy in R 4 by multiplying the two copies of  the R 2 
parts. For this purpose I will study the vacuum struc- 
ture in R 2. 

A separable copy of  the vacuum, co(x,y), can be 
written in the form 

co(r, q~) = exp [ is  (r)h((~).~], (12) 

where h'h  = 1. Eq. (12) satisfies the Landau gauge con- 
dition if and only if a ( r )  and h(40 satisfy [16] 

1 • 
3 2 a  = - -  ~ sm(2a) h" 32h, (13) 

32h sinc~ + h 32c~ cos a = (h'32h)h sin3~x. (14) 

Separability implies that (14) is satisfied if (13) holds. 
From (13) follows 

L2h = X2h, (15) 

32a = ½ X2r-2 sin 2a, (16) 

where X is a separation constant. The solution a(r) of 
(16) behaves like r Ixl near r = 0. Since a(r) is real analy- 
tic one must set X = integer. The general solution of  
(15) is given by 

s i n  X4) 
h(q~) = A ( cos X~ ~, (17) 

\ 
0 " 

where A is a constant orthogonal matrix. Substituting 
t = X In(r) into (16) one gets the pendulum equation 

1 . 
= ~ sin 2a. ( 1 8 )  

The exact solution to this equation is 

= 2 arctan[(r/ro)lXl]. (19) 

Note that as r ~ 0% w has the following limit: 

( - 1  0 )  
lim w(r, ~b) = . (20) 

r ~ =  0 --1 

This allows one to compactify R 2 O {o~} ~ S 2. I f  one 
now multiplies two such solutions, oo 1 (x , y )  and 
eo2(z, t) for example, one gets a family o f  copies of  
the vacuum satisfying the Landau gauge condition. 
This family can be classified by Z X Z = (X1, ~2), and 
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has the interesting property that it lies in the compact 
space S 2 × S 2. An interesting observation is that 

COl(X, y) itself gives a copy of the vacuum satisfying 
both the Coulomb and the Landau gauge fixing condi- 
tions. This shows that in the q = 0 [eq. (8)] sector 
there are non-trivial configurations besides the A .  -= 0 

configuration. 
As the last remark I note that the two-dimensional 

copies presented here can be used with the three-dimen- 
sional copies of the vacuum [1,2] to yield copies of 
the vacuum in all dimensions k 7> 2. 
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